LIVING BY CHEMISTRY SECOND EDITION

Angelica M. Stacy

LIVING BY CHEMISTRY

Angelica M. Stacy

Professor of Chemistry University of California at Berkeley

SECOND EDITION

with

Janice A. Coonrod

Bishop O'Dowd High School Senior Writer and Developer

Jennifer Claesgens

Weber State University Curriculum Developer

Publisher: Ann Heath

Sponsoring Editor: Jeffrey Dowling

Development Editor: Donald Gecewicz

Project Manager: Karen Misler

Marketing Manager: Janie Pierce-Bratcher

Editorial Assistant: Matthew Belford

Copyeditor: Kristin Ferraioli

Director of Editing, Design, and Media Production for the Sciences and Social Sciences: **Tracey Kuehn**

Managing Editor: Lisa Kinne

Project Editors: Enrico Bruno, Robert M. Errera

Production Manager: Paul Rohloff

Photo Editor: Robin Fadool

Associate Photo Editor: Eileen Liang

Art Director: Diana Blume

Text and Cover Designer: Marsha Cohen, Parallelogram Graphics

Art Manager: Matthew McAdams

Illustrator: Joe BelBruno

Technical Artist: Precision Graphics

Composition: Aptara®, Inc.

Printing and Binding: RR Donnelley

Cover: Photo by C. Mane / Getty Images

This material is based upon work supported by the National Science Foundation under award number 9730634. Any opinions, findings, and conclusions or recommendations expressed in

this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

 $\ensuremath{{\ensuremath{\mathbb C}}}$ 2015, 2012 by W. H. Freeman and Company. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Companion Website

bcs.whfreeman.com/livingbychemistry2e The *Living by Chemistry* Companion Website is available free of charge and provides all access to all media for this program.

Media and e-Book Offerings

For information about additional resources that are available to support *Living by Chemistry*, please visit the catalog page: highschool.bfwpub.com/LBC2e

Library of Congress Preassigned Control Number: 2014953443

ISBN-10: 1-4641-4231-9

ISBN-13: 978-1-4641-4231-4

First Printing

Printed in the United States of America

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 Houndmills, Basingstoke RG21 6XS, England http://www.highschool.bfwpub.com A number of individuals joined the project as developers for various periods of time along the way to complete this work. Thanks go to these individuals for their contributions to the unit development: Karen Chang, David Hodul, Rebecca Krystyniak, Tatiana Lim, Jennifer Loeser, Evy Kavaler, Sari Paikoff, Sally Rupert, Geoff Ruth, Nicci Nunes, Gabriela Waschewski, and Daniel Quach.

David R. Dudley contributed original ideas and sketches for some of the wonderful cartoons interspersed throughout the book. His sketches provided a rich foundation for the art manuscript.

This work would not have been possible without the thoughtful feedback and great ideas from numerous teachers who field-tested early versions of the curriculum. Thanks go to these teachers and their students: Carol de Boer, Wayne Brock, Susan Edgar-Lee, Melissa Getz, David Hodul, Richard Kassissieh, Tatiana Lim, Evy Kavaler, Geoff Ruth, Nicci Nunes, Gabriela Waschewski, and Daniel Quach.

Dr. Truman Schwartz provided a thorough and detailed review of the first edition manuscript. We appreciate his insights and chemistry expertise.

Thank you everyone at Bedford, Freeman & Worth who contributed to the development of this second edition. Special thanks to Jeffrey Dowling for masterfully guiding the development, to Donald Gecewicz for thoughtful development editing, feedback, and advice, and to Karen Misler for keeping us all on track with expert project management. Thank you, Sharon Sikora, for help with assessments and appendix material. Finally, thanks go to the publisher Ann Heath, who believed in this program and helped to assemble and guide the team along the way.

Science Content Advisor

Dr. A. Truman Schwartz, Macalaster College (emeritus), St. Paul, MN

Teaching and Content Reviewers

Scott Balicki, Boston Latin School, Boston, MA Greg Banks, Urban Science Academy, West Roxbury, MA Randy Cook, Tri County High School, Howard City, MI Thomas Holme, University of Wisconsin, Milwaukee, Milwaukee, WI Mark Klawiter, Deerfield High School, Deerfield, WI Kathleen Markiewicz, Boston Latin School, Boston, MA Nicole Nunes, Liberty High School, Benicia, CA Carri Polizzotti, Marin Catholic High School, Larkspur, CA Paul Thomson, Jr., High School for Math, Science, and Engineering at CCNY, New York, NY Matthew Vaughn, Burlingame High School, Burlingame, CA Rebecca Williams, Richland College, Dallas, TX

About the Author

Angelica M. Stacy is a Professor of Chemistry at the University of California, Berkeley. At Berkeley, she teaches introductory chemistry and does research in materials chemistry and chemistry education. She has received numerous awards and honors for her teaching and held the President's Chair for Teaching at the University of California from 1993 to 1996. In 2005, the National Science Foundation named Dr. Stacy a Distinguished Teacher Scholar. As a part of her work to help more students succeed in science and gain a better understanding of the principles of chemistry, she has participated as a member of the Physical Sciences Design team that helped develop the Next Generation Science Standards. She has also participated on various AP[®] chemistry course committees as part of the College Board's efforts to redesign the AP® chemistry course and exam. Dr. Stacy has worked for many years in designing and refining the Living by Chemistry curriculum. She developed this curriculum to support students as they learn chemistry by offering them engaging challenges that relate to the world around them.

How to Use This Book xvi Laboratory Safety xx Note to Students xxii

Unit 1 Alchemy Matter, Atomic Structure, and Bonding 1

CHAPTER 1	Defining Matter 2
CHAPTER 2	Basic Building Materials 22
CHAPTER 3	A World of Particles 50
CHAPTER 4	Moving Electrons 83
CHAPTER 5	Building with Matter 123

Unit 2 Smells

Molecular Structure and Properties 145

CHAPTER 6	Speaking of Molecules	146
CHAPTER 7	Building Molecules 18	84
CHAPTER 8	Molecules in Action 2	13
CHAPTER 9	Molecules in the Body	241

Unit 3 | Weather

Phase Changes and Behavior of Gases 257

CHAPTER 10	Physically Changing Matter	258
CHAPTER 11	Pressing Matter 294	
CHAPTER 12	Concentrating Matter 326	

Unit 4 | **Toxins**

Stoichiometry, Solution, Chemistry, and Acids and Bases 353

CHAPTER 13	Toxic Changes 35	54
CHAPTER 14	Measuring Toxins	380
CHAPTER 15	Toxins in Solution	407
CHAPTER 16	Acidic Toxins 428	
CHAPTER 17	Toxic Cleanup 45	6

Unit 5 | **Fire**

Energy, Thermodynamics, and Oxidation-Reduction 481

CHAPTER 18	Observing Energy 482
CHAPTER 19	Measuring Energy 511
CHAPTER 20	Understanding Energy 528
CHAPTER 21	Controlling Energy 550
CHAPTER 22	Radiating Energy 575

Unit 6 | **Showtime**

Reversible Reactions and Chemical Equilibrium 607

CHAPTER 23	Chemical Equilibrium 608
CHAPTER 24	Changing Conditions 639
APPENDIX A	Math Spotlights A-0
APPENDIX B	Connecting Chemical Concepts B-1
APPENDIX C	Answers to Selected Exercises C-1
APPENDIX D	Reference Tables D-1
GLOSSARY IN E	NGLISH AND SPANISH G-1
INDEX I-1	

How to Use This Book xvi Laboratory Safety xx Note to Students xxii

SituremalScience Source

Unit 1 | Alchemy

Matter	, Ate	omic Structure, and Bonding	
CHAPTER	1	Defining MatterLesson 1Tools of the Trade: Lab Equipment and Safety 3Featured DemoA Penny for Your Thoughts 6Lesson 2A Penny for Your Thoughts: Introduction to Chemistry 7Lesson 3What's the Matter?: Defining Matter 9Lesson 4Mass Communication: Mass and Volume 13Lesson 5All That Glitters: Density 17Chapter 1Summary 21	2
CHAPTER	2	Basic Building MaterialsLesson 6A New Language: Chemical Names and Symbols 23Lesson 7Now You See It: The Copper Cycle 27Lesson 8What Goes Around Comes Around: Conservation of MatterFeatured ActivityCreate a Table 36Lesson 9Create a Table: Properties of the Elements 37Lesson 10Breaking the Code: The Periodic Table 41Chapter 2Summary 49PROJECTElement Profile 49	22 31
CHAPTER	3	A World of ParticlesLesson 11Atomic Pudding: Models of the Atom 51Lesson 12Atoms by Numbers: Atomic Number and Atomic Mass 56Lesson 13Subatomic Heavyweights: Isotopes 61Lesson 14Isotopia: Stable and Radioactive Isotopes 65Featured ActivityNuclear Quest 70Lesson 15Nuclear Quest: Nuclear Reactions 71Lesson 16Old Gold: Formation of Elements 77Chapter 3Summary 81PROJECTNuclear Power 81	50
CHAPTER	4	Moving ElectronsFeatured LabFlame Tests 83Lesson 17Technicolor Atoms: Flame Tests 84	82

- Lesson 18 Life on the Edge: Valence and Core Electrons 88
- Lesson 19Noble Gas Envy: Ions93
- **Lesson 20** Getting Connected: Ionic Compounds 98

Featured Activity Salty Eights 103

- Lesson 21 Salty Eights: Formulas for Ionic Compounds 104
- Lesson 22 Isn't It Ionic?: Polyatomic Ions 109
- Lesson 23 Alchemy of Paint: Transition Metal Chemistry 112
- Lesson 24 Shell Game: Electron Configurations 116

Chapter 4 Summary 122

CHAPTER 5 Building with Matter

123

145

- Featured Lab Classifying Substances 124
 Lesson 25 You Light Up My Life: Classifying Substances 125
 Lesson 26 Electron Glue: Bonding 125
 Featured Lab Electroplating Metals 134
 Lesson 27 Electrons on the Move: Electroplating Metals 135
 Chapter 5 Summary 139
- Unit 1 | **Review 140**

Unit 2 | Smells

Molecular Structure and Properties

CHAPTER 6	Speaking of Molecules	146
	Lesson 28 Sniffing Around: Molecular Formulas 147	
	Lesson 29 Molecules in Two Dimensions: Structural Formulas 151	
	Lesson 30 HONC If You Like Molecules: Bonding Tendencies 156	
	Featured Activity Connect the Dots 160	
	Lesson 31 Connect the Dots: Lewis Dot Symbols 161	
	Lesson 32 Eight Is Enough: Octet Rule 165	
	Lesson 33 Where's the Fun?: Functional Groups 169	
	Lesson 34 Create a Smell: Ester Synthesis 175	
	Lesson 35 Making Scents: Analyzing Ester Synthesis 179	
	Chapter 6 Summary 183	
	PROJECT Functional Groups 183	
CHAPTER 7	Building Molecules	184
	Lesson 36 New Smells, New Ideas: Ball-and-Stick Models 185	
	Featured Activity Two's Company 190	
	Lesson 37 Two's Company: Electron Domains 191	
	Lesson 38 Let's Build It: Molecular Shape 196	
	Lesson 39 What Shape Is That Smell?: Space-Filling Models 200	
	Lesson 40 Sorting It Out: Shape and Smell 204	
	Lesson 41 How Does the Nose Know?: Receptor Site Theory 208	
	Chapter 7 Summary 212	
	PROJECT Other Smell Classifications 212	

CHAPTER 8 **Molecules in Action** 213 Lesson 42 Attractive Molecules: Attractions between Molecules 214 Lesson 43 Polar Bears and Penguins: Electronegativity and Polarity 223 Lesson 44 Thinking (Electro)Negatively: Electronegativity Scale 227 Lesson 45 I Can Relate: Polar Molecules and Smell 230 Lesson 46 Sniffing It Out: Phase, Size, Polarity, and Smell 234 Chapter 8 Summary 239 PROJECT Sense of Smell Study 240 CHAPTER **9 Molecules in the Body** 241 Lesson 47 Mirror, Mirror: Mirror-Image Isomers 242 Lesson 48 Protein Origami: Amino Acids and Proteins 247 Chapter 9 Summary 251 PROJECT Modeling a Receptor Site 251

Unit 2 | Review 253

Unit 3 | Weather

Phase Changes and Behavior of Gases

CHAPTER 10	Physica	lly Changing Matter	258
	Lesson 49	Weather or Not: Weather Science 259	
	Lesson 50	Raindrops Keep Falling: Measuring Liquids 263	
	Lesson 51	Having a Meltdown: Density of Liquids and Solids 267	
	Featured Lab	Thermometers 272	
	Lesson 52	Hot Enough: Thermometers 273	
	Lesson 53	Absolute Zero: Kelvin Scale 278	
	Lesson 54	Sorry, Charlie: Charles's Law 282	
	Featured Act	ivity Density, Temperature, and Fronts 287	
	Lesson 55	Front and Center: Density, Temperature, and Fronts 288	
	Chapter 10	Summary 293	
	PROJECT Di	fferent Thermometers 293	
CHAPTER 11	Pressing	g Matter	294
	Lesson 56	It's Sublime: Gas Density 295	
	Lesson 57	Air Force: Air Pressure 299	
	Featured Lab	Boyle's Law 303	
	Lesson 58	Feeling under Pressure: Boyle's Law 304	
	Lesson 59	Egg in a Bottle: Gay-Lussac's Law 309	
	Lesson 60	Be the Molecule: Molecular View of Pressure 314	
	Lesson 61	What Goes Up: Combined Gas Law 317	
	Featured Lab	High and Low Air Pressure 321	

257

Lesson 62 Cloud in a Bottle: High and Low Air Pressure 322

Chapter 11 Summary 325

PROJECT High and Low Pressure 325

CHAPTER 12 Concentrating Matter

326

353

- **Lesson 63** $\frac{n}{s}$ for Number: Pressure and Number Density 327
- Lesson 64STP: The Mole and Avogadro's Law 331
- Lesson 65Take a Breath: Ideal Gas Law 335
- Lesson 66 Feeling Humid: Humidity, Condensation 339
- Lesson 67 Hurricane!: Extreme Physical Change 343

Chapter 12 Summary 347

PROJECT Global Climate Change 347

UNIT 3 | **Review 348**

Unit 4 | **Toxins**

Stoichiometry, Solution Chemistry, and Acids and Bases

CHAPTER 13	Toxic C	hanges	354
	Lesson 68	Toxic Reactions: Chemical Equations 355	
	Lesson 69	Making Predictions: Observing Change 358	
	Lesson 70	Spare Change: Physical versus Chemical Change 363	
	Lesson 71	Some Things Never Change: Conservation of Mass 367	
	Lesson 72	Atom Inventory: Balancing Chemical Equations 371	
	Lesson 73	What's Your Reaction?: Types of Reactions 375	
	Chapter 13	Summary 379	
	PROJECT TO	oxins in the Environment 379	
CHAPTER 14	Measur	ing Toxins	380
	Lesson 74	Lethal Dose: Toxicity 381	
	Featured Ac	tivity Counting by Weighing 385	
	Lesson 75	Make It Count: Counting by Weighing 386	
	Lesson 76	Billions and Billions: Avogadro's Number 390	
	Lesson 77	What's in a Mole?: Molar Mass 394	
	Lesson 78	Mountains into Molehills: Mass-Mole Conversions 398	
	Lesson 79	How Sweet It Is: Comparing Amounts 402	
	Chapter 14	Summary 405	
	PROJECT L	ethal Dose of a Toxic Substance 406	
CHAPTER 15	Toxins	in Solution	407
	Featured La	b Solution Concentration 408	
	Lesson 80	Bearly Alive: Solution Concentration 409	

Lesson 81 Drop In: Molecular Views 413 Lesson 82 Holey Moley: Preparing Solutions 418 Lesson 83 Is It Toxic?: Mystery Solutions 422 Chapter 15 Summary 426

PROJECT Types of Bonding 427

CHAPTER 16 Acidic Toxins

Lesson 84	Heartburn: Acids and Bases 429	
Lesson 85	Pass the Proton: Acid and Base Theories 433	
Lesson 86	pHooey!: [H ⁺] and pH 437	
Lesson 87	Watered Down: Dilution 442	
Featured Lab	Neutralization Reactions 446	
Lesson 88	Neutral Territory: Neutralization Reactions 447	
Lesson 89	Drip Drop: Titration 451	
Chapter 16	Summary 455	
PROJECT Dissolving Toxins 455		

CHAPTER **17** Toxic Cleanup

Lesson 90 Solid Evidence: Precipitation Reactions 457 Featured Lab Mole Ratios 461 Lesson 91 Mole to Mole: Mole Ratios 462 Lesson 92 Mole Tunnel: Stoichiometry 467 Lesson 93 Get the Lead Out: Limiting Reactant and Percent Yield 471 Chapter 17 Summary 476 PROJECT Removing Toxins 476 UNIT 4 | **Review** 477

Unit 5 | Fire

Energy, Thermodynamics, and Oxidation-Reduction CHAPTER **18** Observing Energy

Lesson 94 Fired Up!: Energy Changes 483 Lesson 95 Not So Hot: Exothermic and Endothermic 486 Lesson 96 Point of View: First and Second Laws 490 Featured Lab Heat Transfer 494 Lesson 97 Heat Versus Temperature: Heat Transfer 495 Lesson 98 The Heat Is On: Specific Heat Capacity 500 Lesson 99 Where's the Heat?: Heat and Phase Changes 505 Chapter 18 Summary 509 **PROJECT Uses of Fire 510**

428

456

481

482

19 Measuring Energy Lesson 100 You're Fired!: Combustion 51251Featured Lab Calorimetry 515Calorimetry 515Lesson 101Now We're Cooking: Calorimetry 516Lesson 102Counting Calories: Calorimetry Calculations 519Lesson 103Fuelish Choices: Heat of Combustion 523Chapter 19Summary 527	1
20Understanding Energy52Featured ActivityMake It or Break It 529Lesson 104Make It or Break It: Bond Energy 530Lesson 105Over the Hill: Reversing Reactions 535Lesson 106Speed Things Up: Rate of Reaction 540Lesson 107Make It Work: Work 544Chapter 20Summary 548PROJECTUses of Fire 549	8
21 Controlling Energy 55 Lesson 108 Metal Magic: Oxidation 551 Lesson 109 Pumping Iron: Heat of Formation 554 Lesson 110 Electron Cravings: Oxidation-Reduction 559 Lesson 111 The Active Life: Activity of Metals 563 Featured Lab Electrochemical Cell 568 Lesson 112 Current Events: Electrochemical Cell 569 Chapter 21 Summary 574 PROJECT Alternative Energy 574	0
22Radiating Energy57Lesson 113All Aglow: Light Energy 576581Lesson 114Now You See: Light Waves 581586Lesson 115Beyond What You See: Electromagnetic Radiation 586586Lesson 116How Absorbing: Spectroscopy 593593Chapter 22Summary 599PROJECTWavelength and Energy 600UNIT 5Review 601	'5
	19 Measuring Energy 51 Lesson 100 You're Fired!: Combustion 512 Featured Lab Calorimetry 515 Lesson 101 Now We're Cooking: Calorimetry 516 Lesson 102 Counting Calories: Calorimetry Calculations 519 Lesson 102 Counting Calories: Calorimetry Calculations 519 Lesson 103 Fuelish Choices: Heat of Combustion 523 Chapter 19 Summary 527 52 Peatured Activity Make It or Break It 529 Lesson 104 Make It or Break It: Bond Energy 530 Lesson 105 Over the Hill: Reversing Reactions 535 Lesson 106 Speed Things Up: Rate of Reaction 540 Lesson 107 Make It Work: Work 544 Chapter 20 Summary 548 PROJECT Uses of Fire 549 55 Lesson 108 Metal Magic: Oxidation 551 Lesson 109 Pumping Iron: Heat of Formation 554 S63 Lesson 110 Electron Cravings: Oxidation-Reduction 559 Lesson 111 The Active Life: Activity of Metals 563 Featured Lab Electrochemical Cell 568 Lesson 112 Current Events: Electrochemical Cell 569 Chapter 21 S0mmary 574 22 Radiating Energy 576 Lesson 113 All Aglow: Light Energy 576 Lesson 114 Now You See: Light

Unit 6 | Showtime

607

608

Reversible Reactions and	l Chemical	Equilibrium
--------------------------	------------	-------------

CHAPTER 23 Chemical Equilibrium

- Lesson 117 How Awesome: Acid-Base Indicators 609
- Lesson 118 How Backward: Reversible Processes 613
 - Lesson 119 How Dynamic: Dynamic Equilibrium 619

Lesson 120 How Favorable: Equilibrium Constant *K* 626 **Lesson 121** How Balanced: Equilibrium Calculations 631 Chapter 23 Summary 637 **PROJECT Neurotransmitters 638** CHAPTER 24 Changing Conditions 639 Lesson 122 How Pushy: Le Châtelier's Principle 640 Lesson 123 How Colorful: Applying Le Châtelier's Principle 646 Chapter 24 Summary 654 PROJECT It's Showtime! 655 UNIT 6 | **Review** 657 APPENDIX **A** Math Spotlights **A-0** SI Units of Measure A-0 Accuracy, Precision, and Significant Digits A-1 Solving Equations A-3 Order of Operations A-5 Averages A-7 Graphing A-8 Ratios and Proportions A-11 Scientific Notation A-14 Dimensional Analysis A-16 Logarithms A-17

APPENDIX **B** Connecting Chemical Concepts

Chemical Names and Formulas B-1 Percent Composition B-10 Molecular and Empirical Formulas B-12 More Stoichiometry Practice B-17

APPENDIX C	Answers to Selected Exercises	C-1			
APPENDIX D	Reference Tables	D-1			
	Table of Average Atomic Masses D-1				
	Table of Electronegativities, Bonding Continuum, Average Bond Energie	es,			
	Heats of Combustion D-3				
	Solubility Trends, Polyatomic Ions D-4				
	Specific Heat Capacities at 20 °C, SI Units and Conversion Factors D-5				
	Physical Constants, Symbols and Abbreviations D-6				
	Proportional Relationships, Proportional Relationships in the Gas Laws D-7				
	Other Important References, Some Key Formulas D-8				

Glossary in English and Spanish G-1

Index

I-1

B-1

HOW TO USE THIS BOOK

Next generation chemistry brought to life.

- Chapter-opening pages introduce the main ideas and learning goals of the chapter.
- THINK ABOUT IT prepares you to read about chemistry. Take a moment to reflect on the lesson question and topic outline before you read the lesson.

	Heartburn Acids and Bases
2	THINK ABOUT IT Solutions have a wide variety of properties. Acetic acid, or vinegar, is used to flavor salad dressing, while citric acid gives a sour taste to lemon juice and orange juice. Ammonium hydroxide used to clean windows, and sodium hydroxide is
	used to open clogged drains. All of these solutions are either acids or bases and can be classified into these categories based on their general properties. What are the properties of acids and bases?
	To answer this queetion, you will explore O Acids and Bases Indicators The pH Scale
	EXPLORING THE TOPIC
	GENERAL PROPERTIES Acids and bases are special categories of solutions. They are extremely useful to us in our everyday lives precisely because of their unique properties. The term acid comes from the Latin word acidus, which means sour. Many of the sour tastes in our food come from the acids found in those foods.
CONSUMER CONNECTON Carbonic acid, H ₂ CO ₂ and phosphoric acid, H ₂ CO ₂ are two acids found in carbonated acid drinks. The phosphoric acid acis as a flavoring and a preservative while the carbonic acid is a byproduct of carbonation.	For much of history, the term alkaline was used instead of base. Bases are found in many household cleaners, from scapes to drain openers to oven cleaners. Bases have a bitter taste, as you may have noticed if you have ver accidentially tasted scap. Bases usually feel slipperty to the touch. The slipperiness of bases arises from the fact that they are reacting with the faits in your sites and turning them into scap.
	In general, acids and bases are toxic, especially large quantities of concentrated solutions. It is important that acids and bases not splash on your skin or in your eyes. Acids and bases are both corrosive and can cause a <i>chemical burn</i> . A chemical burn is one in which living tissue is damaged.
C to however	Indicators Many acidic and basic solutions are colorless and odorless, which can make them difficult to detect by their appearance alone. Because these solutions can be toxic, it is useful to be the on monitor them. Luckily, there are molecular substances called indicators that change color when they come into contact with acids and there. If form of the due are present of in difference are nonlearner and the areas areas and the present of the indicators.

Lesson 84 | Acids and Bases 42

- Develop the science practice of using visual representations and models to explain chemistry by studying the **figures**, **diagrams**, and **illustrations** used throughout the book.
- Pay attention to **Big Ideas**, especially when you are reviewing for a quiz or exam. These are fundamental concepts of chemistry.

EXPLORING THE TOPIC allows you to review and practice the chemistry at the right pace. Each lesson
follows in step with the daily hands-on, inquiry-based lesson from your class.

Look at the **key terms** in bold. Find definitions in English and Spanish at the end of the book.

Important to Know highlights ideas that you should retain for further use throughout the course. So far you've been introduced to three of the gas laws. These gas laws apply when any two of the variables, *P*, *V*, or *T*, are changed and everything else stays the same All temperatures must be converted to the Kelvin scale when completing gas law problems. **Charles's law** V = kT P and amount of gas do not change. $k = \frac{V}{T}$ **Gay-Lussac's law** P = kT V and amount of gas do not change. $k = \frac{P}{T}$ **Boyle's law** $P = k\left(\frac{1}{V}\right) T$ and amount of gas do not change. k = PVNote that the proportionality constant, k, is a generic symbol and is different for each gas sample and for each gas law. Balloon with Air Imagine that you fill a balloon with air to a volume of 1.5 L. The air is at a temperature of 20 °C. You place the balloon in a refrigerator for half an hour until the air in the balloon is at a temperature of 10 °C. What is the new volume of the balloon? Lessons offer critical math support. The **examples** 4 Solution show you how to solve problems step by step. First figure out which gas law to use. The external pressure on the balloon remains the same because the air pressure in the refrigerator is the same as the air pressure outside Use Charles's law. You can predict that V will decrease because T decreases. Try to answer the question yourself before Initial Conditions Final Conditions reading the solution to check your understanding. $P_2 = 1.0$ atm $T_2 = 10$ °C $P_1 = 1.0 \text{ atm}$ $T_1 = 20 \ ^\circ \mathrm{C}$ $V_1 = 1.5 L$ $V_2 = ?$ K = 273 + CConvert temperature to the Kelvin scale. $T_1 = 273 + 20$ = 293 K $T_2 = 273 + 10$ = 283 K The LESSON SUMMARY recaps the main ideas $k = \frac{V_1}{T_1} = \frac{1.5 \text{ L}}{293 \text{ K}} = 0.0050 \text{ L/K}$ Determine the value of k. of the lesson that answer the opening question. Use k to determine V_{2} . $V_2 = k T_2$ Reading the lesson summaries is a good way to $= 0.0050 \text{ L/K} \cdot 283 \text{ K}$ = 1.4 L review for a quiz or an exam. The balloon has shrunk to a volume of 1.4 L. Chapter 11 | Pressing Matter 312

Practice makes perfect.

LESSON SUMMARY How do meteorologists keep track of the amount of rainfall? Everywhere around the world, the amount of rainfall is measured by its height. If volume were used to report rainfall, each meteorologist would report a different KEY TERMS number, depending on the area of the base of the rain gauge used. Height and volume for a specific rain gauge are related by a proportionality constant, k. proportiona proportionality constant Doing the **Exercises** will help you practice what Exercises **Reading Questions** Suppose you have a cylindrical rain gauge with a base area of 2.0 cm². Explain two different ways you can determine the volume when the height of water is 3.0 cm. 2. Explain in your own words why meteorologists prefer to measure rain in inches or centimeters, not in milliliters or cubic centimet **Reason and Apply** 3. If the amount of rainfall increases, do both the volume and height of water in the Answer the Reading Questions to make sure you rain gauge keep track of this increase? Explain your thinking. 4. If you use a beaker for a rain gauge and the weather station uses a graduated cylinder, will both instruments give the same volume? The same height? 5. If a large washtub, a dog's water dish, and a graduated cylinder were left outside during a rainstorm, would the three containers all have the same volume of water in them after the storm? Explain why or why not.6. Inches are used in the United States, but centimeters are used by scientists and in the rest of the world. Look at a ruler that is marked in both inches and centimeters a. Make a graph of centimeters versus inches so that the y-axis is centimeters and Answer the Reason and Apply questions to the x-axis is inches. аннаниянияналарананиянаниянанананиянаниянания мсквз 1 2 3 4 5 ^{cm} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> b. Convert 12 in. to centimeters. c. How many inches is 10 cm²
> d. How many inches is 1 cm²

Chapter 10 | Physically Changing Matter

266

7. A student placed the same empty rain gauge outside

A student placed the same empty rain gauge outside before five different rainstorms. She measured the height and volume of the water in the gauge after each storm. Her results are in the table.
 2 25 cm
 3. Which rainstorm dropped the most rain? Did you use height or volume to answer this question? Why?
 b. What pattern do you notice?
 C Izraw a graph of the data to show that the solume e=01.

b. What pattern do you notice?
c. Draw a graph of the data to show that the volume and height are proportional.
d. Explain why the data points do not all lie exactly on a straight line.
e. Predict the volume for a height of 6.0 cm. Show your work.

practice problem solving and using evidencebased reasoning to justify answers.

you learn each day.

understood the main ideas.

Appendix A: Math Spotlights

Quantity	Uı (abbrev	nit viation)	SI	Units of Me	asure				
length	mete	r (m)	Scientists rely on repeatable measurements as they study the physical world. It is						
mass	kilogra	m (kg)	important that they use consistent units of measure worldwide. In 1960 an						
time	secor	nd (s)	Inte	international council standardized the metric system, creating the Système International d'Unités (International System of Units) abbreviated as SI					
temperature	Kelvi	Kelvin (K)		mernatonal a omits (international system of offits), abbeviated as Si.					
amount of substance	mole	(mol)	In the table at left, there are the basic 51 units used in chemistry. Other units such as density and volume are combinations of these.						
			SI u com is a The mea	nits are based on po bining standard pre combination of <i>cent</i> se are the prefixes us nings. (A kilogram	wers of 10. L fixes with the i- and meter. sed in the SI, is the only ba	arger and small ese basic units. I A centimeter is along with their isic SI unit that I	er units get their na For example, the wo one one-hundredth r abbreviations and has a prefix as part o	mes by rd <i>centimete</i> of a meter. their of its name.)	
		Pre	fix	Multiple	Notation	Prefix	Multiple	Notation	
		tera-	(T-)	1,000,000,000,000	1012	pico- (p-)	0.000 000 000 001	10-12	
		giga-	(G-)	1,000,000,000	10 ⁹	nano- (n-)	0.000 000 001	10-9	
	mega- (M-		(M-)	1,000,000	10 ⁶	micro- (µ-)	0.000 001	10-6	
		kilo- (k-) hecto- (h-)		1,000	10 ³	milli- (m-)	0.001	10^{-3}	
				100	10 ²	centi- (c-)	0.01	10^{-2}	
	deka- (d		(da-)	10	10 ¹	deci- (d-)	0.1	10^{-1}	
Exampl	e 1	How a. Solu a.	gth C many 1 562 c tion 562 c	Conversions neters does each of entimeters b . $m \cdot \frac{1 m}{100 cm} = 5.62$	[°] these length 2.5 kilomete 2 m b. 2	is represent? rs 2.5 km • <u>1000 r</u>	<u>n</u> = 2500 m		
Exampl	e 2	The One r water	Mass nillilite at 4 °C	s of One Liter r, or cubic centime Weigh?	ter, of water	at 4 °C weighs	1 g. How much doo	es 1 L of	
\-0									

Glossary

English/Inglés

Α

absolute zero The temperature defined as 0 K on the Kelvin scale and -273.15 °C on the Celsius scale. Considered to be the lowest possible temperature that matter can reach. (p. 279)

absorption Of light, not being transmitted because certain colors are removed by an object. Absorption transfers energy back to the object. (p. 579)

acid A substance that adds hydrogen ions, H^+ , to an aqueous solution; a substance that donates a proton to another substance in solution. (p. 430)

actinides A series of elements that follow actinium in Period 7 of the periodic table and that are typically placed separately at the bottom of the periodic table. (p. 44)

activation energy The minimum amount of energy required to initiate a chemical process or reaction. (p. 537)

activity series A table showing elements in order of their chemical activity, with the most easily oxidized at the top of the list. (p. 564)

actual yield The amount of a product obtained when a reaction is run (as opposed to the theoretical yield). (p. 473)

air mass A large volume of air that has consistent temperature and water content. (p. 288)

alkali metals The elements in Group 1A on the periodic table, except for hydrogen. (p. 44)

alkaline earth metals The elements in Group 2A on the periodic table. (p. 44)

Spanish/Español

 $\label{eq:ceroabsoluto} \ La temperatura definida como 0 K en la escala Kelvin y -273.15 °C en la escala Celsius. Se considera como la temperatura más baja que puede alcanzar la materia. (p. 279)$

absorción De la luz: cuando esta no se transmite porque ciertos colores han sido eliminados (por un objeto). La absorción transfiere energía al objeto. (p. 579)

ácido Sustancia que cede iones de hidrógeno, H⁺, a una solución acuosa; una sustancia que dona un protón a otra sustancia en la solución. (p. 430)

actínidos Serie de elementos que están después del actinio en el séptimo período de la tabla periódica y que usualmente, aparecen en la parte de abajo de la tabla. (p. 44)

energía de activación La mínima cantidad de energía que se necesita para iniciar una reacción o un proceso químico. (p. 537) serie de actividad Una tabla que muestra elementos ordenados de acuerdo con la actividad química de cada uno de dicios elementos emezando bor

aquellos que se oxidan con mayor facilidad. (p. 564) rendimiento real La cantidad de un producto que se

obtiene cuando se ejecuta una reacción (al contrario del rendimiento teórico). (p. 473) masa de aire Gran volumen de aire cuya temperatura

y contenido de agua son constantes. (p. 288) **metales alcalinos** Los elementos del grupo 1A de la tabla periódica, con excepción del hidrógeno. (p. 44)

(p. 44) metales alcalinotérreos Los elementos del grupo 2A de la tabla periódica. (p. 44)

G-1

Extra support when you need it.

When you see a note about Math Spotlights in a lesson you can turn to the back of the book for a quick review of that math topic.

Do the Practice Exercises for a quick refresher. Answers are provided directly below so you can check your understanding.

The Glossary contains all the key terms, defined in English and Spanish.

Laboratory experiments are an important part of chemistry. Follow these safety precautions to avoid danger.

Before Working in the Lab

- Read and become familiar with the entire procedure before starting.
- Listen to instructions. When you are in doubt, ask your teacher.
- Know the location of emergency exits and escape routes.
- Learn the location and operation of all safety equipment in your laboratory, including the safety shower, eye wash, first aid kit, fire extinguishers, and fire blanket.

Emergencies and Accidents

- Immediately report any accident, however small, to your teacher.
- If you get chemicals on you, rinse the affected area with water.
- In case of chemicals on your face, wash off with plenty of water before removing your goggles. In case of chemicals in your eyes, remove contact lenses and wash eyes with water for at least 15 minutes.
- Minor skin burns should be held under cold, running water.

General Conduct

- Clear your bench top of all unnecessary materials, such as books and jackets, before starting work.
- Do not bring gum, food, or drinks into the laboratory.

Appropriate Apparel

- Always wear protective safety goggles when working in the laboratory.
- Avoid bulky, loose-fitting clothing; roll up long sleeves; and tie back loose hair. Lab coats or aprons may be required.
- Wear long pants and shoes that cover the whole foot (not sandals) so your feet are protected from accidental spills or broken glassware.

Using Glassware and Equipment

- Do not use chipped or cracked glassware or damaged equipment.
- Be careful when handling hot glassware or apparatus. Remember, hot glassware looks like cold glassware.

- Place hot glassware or apparatus (such as a crucible) on an appropriate cooling surface, such as a wire gauze.
- Never point the open end of a test tube toward yourself or anyone else.
- Never fill a pipette using mouth suction. Always use a bulb.
- Keep electrical equipment away from sinks and faucets to minimize the risk of electrical shock.

Using Chemicals

- Never taste substances in the laboratory and avoid touching them if possible.
- Check chemical labels twice to make sure you have the correct substance. Some chemical formulas and names differ by only a letter or a number.
- Read and follow all hazard classifications shown on the label.
- Never pour anything down the drain unless instructed to do so by your teacher.
- When transferring chemicals from a common container to your own test tube or beaker, take only what you need. Do not return any extra material to the original container, because this may contaminate the original.
- Mix all substances together slowly. Add concentrated solutions to dilute solutions. When working with acids and bases, always add concentrated acids and bases to water; never add water to a concentrated acid or base as this can cause dangerous spattering.
- If you are instructed to smell something, do so by wafting (fanning) some of the vapor toward your nose. Do not place your nose near the opening of the container.

Before Leaving the Lab

- Clean your lab station and return equipment to its proper place.
- Make sure that gas lines and water faucets are shut off.
- When discarding used chemicals, carefully follow the instructions provided.

Welcome to *Living by Chemistry*. In this course, you will actively participate in uncovering the chemistry in the laboratory and in the world around you. Rather than simply writing "correct" answers to chemistry questions and problems, you will learn to support answers with evidence. Learning chemistry is a bit like learning a new sport or dance—you will get better with practice. The more you participate, the deeper your understanding will be.

This textbook is designed to be used for reading and reference. The readings focus on the concepts you investigate in class. There are two or three pages of reading to go along with each day's activity, followed by homework exercises. The readings provide real-life examples to further explain and clarify the chemistry concepts. After each day's lesson, the reading and exercises will help you understand and remember what you learned in class. We designed this textbook to be highly readable and sincerely believe it will make the study of high school chemistry enjoyable for you.

Angelica M. Stacy

Uniti Alch

Emperor Rudolf II (1552–1612) governed the Holy Roman Empire from 1576 to 1608. However, he often neglected his duties as ruler and is better known as an alchemist and patron of the arts.

In this unit, you will learn

- what matter is composed of
- to use the language of chemistry
- to decode information contained in the periodic table
- how new substances with new properties are made
- what holds substances together

Granger Collection, NYC-All rights reserved

Why Alchemy?

Chemistry has some of its roots in the ancient practice of alchemy. The alchemists experimented with trying to make gold out of ordinary substances. In the process, they learned a great deal about matter and about chemistry. When you understand the nature of matter and its composition, you will be able to answer the question, "Is it possible to turn ordinary substances into gold?"

CHAPTER 1 Defining Matter

In this chapter, you will study

- the tools of chemistry
- how matter is defined
- how to measure mass, volume, and density
- how types of matter differ from one another

This photo shows gold. How can you find out if an object is made of solid gold or simply coated with gold? What makes gold different from other metals? How is it possible to identify a metal based on its properties?

ith a simple procedure, you can make a copper penny look like gold. But is it really gold, or has something else been made? A way to tell real gold from other substances is to compare the properties of those substances with the properties of gold. Chemists study various properties of matter and use the results to compare and identify substances.

Tools of the Trade Lab Equipment and Safety

THINK ABOUT IT

A chef depends on a wide variety of gadgets and kitchenware to create delicious meals—from whisks and mixers, to ovens and saucepans. An auto mechanic relies on a toolbox of wrenches. In every profession, it is important to have the right tool for the job. Chemists have their own special tools and equipment that allow them to study the world around them. They also have a set of guidelines for using the tools safely.

What tools and equipment do chemists use?

To answer this question, you will explore

- The Tools Chemists Use
- Laboratory Safety

Tools for measuring mass: balance with weighing paper, spatula.

The Tools Chemists Use

Chemistry often brings to mind a laboratory filled with unusual glassware and bubbling beakers. Chemists depend on a variety of tools in their explorations. In particular, chemists need tools that allow them to measure the mass and volume of substances, mix them, heat and cool them, and observe and separate them. Take a moment to examine these illustrations to see some of the tools that are used for these purposes.

Tools for measuring volume: graduated cylinders, Erlenmeyer flask, burette attached to Erlenmeyer flask.

Tools for observing change: test-tube holder, test-tube rack, brush for cleaning.

LESSON

Tools for mixing: stirring rod and beaker.

Tools for separating: Funnel with filter paper, wash bottle, beaker.

Tools for heating: Hot plate with beaker, boiling chips, and stirring rod, a thermometer.

Tools for heating: Bunsen burner with striker, ring stand with utility clamp, and a triangle holding crucible.

Measuring accurate amounts is important to chemists. They weigh solids on electronic balances and measure volumes of liquids in special glassware. You might notice that many of the containers chemists use are made of glass. Glass is a material of choice because substances in a glass container are visible. Chemists use tempered glass containers, which can be heated over flames without shattering. Also, glass containers are relatively easy to clean and reuse. Finally, notice that chemists use ring stands and special clamps to keep glassware from toppling. Spills can be hazardous.

Laboratory Safety

The chemistry laboratory is a place for discovery. However, as in any workplace that uses specialized equipment, safety is always important. There are many situations in a lab that can become dangerous. Before participating in any chemistry activities, you should familiarize yourself with the safety equipment in your lab.

Take a moment to examine these illustrations. What safety equipment and precautions do you notice?

Know the location of the safety equipment and how to use it. Immediately report any laboratory accident, however small, to your teacher.

Never taste or touch chemicals. Never touch hot glassware. If you get chemicals on you, rinse with plenty of water.

CONSUMER CONNECTION

Like labware, bakeware is often made of tempered glass so that it can withstand rapid temperature changes and high temperatures without shattering.

- A few do's and don'ts:
- When working in a lab, dress appropriately. Roll up your sleeves, tie back long hair, and wear closed-toe shoes.
- Be sure that you have read the instructions for the procedure carefully.
- Double-check that you are using the correct chemicals.
- Before you begin working with chemicals or glassware, put on safety goggles.
- Before leaving the lab, clean your lab station and return equipment to its proper place.
- Do not put chemicals back into the original bottle. Doing so might contaminate the chemicals in the bottle.
- Your teacher will provide waste containers; never put chemicals or solutions down the drain unless instructed to do so by your teacher.

LESSON SUMMARY

What tools and equipment do chemists use?

Chemists use their own specialized tools and equipment in the laboratory. These tools and equipment are designed to allow chemists to measure mass and volume, and to mix, heat, cool, observe, and separate substances. It is important to work safely and carefully. When working in a chemistry laboratory, always wear safety goggles. Always wear appropriate clothing and closed-toe shoes. Be prepared to know what to do in case of an accident.

Exercises

Reading Questions

- 1. Why are most chemistry containers made of glass?
- **2.** Describe the appropriate clothing to wear in a chemistry lab.

Reason and Apply

- 3. List three things you should do before beginning any laboratory procedure.
- 4. Describe what you would do in the case of an accidental spill in class.
- 5. List three things you should do before leaving the laboratory.
- 6. What is a fire blanket used for? If necessary, do some research to find out.
- **7.** What is a hood used for in the chemistry laboratory? If necessary, do some research to find out.
- **8.** Why do chemists use clamps and ring stands?

Featured DEMO

A CONTRACTOR

A Penny for Your Thoughts

Purpose

To observe a chemical transformation firsthand.

Materials and Safety

- **1.** List the equipment used in the demonstration.
- **2.** Briefly describe your observations of each substance used in the demonstration.
- **3.** Safety is extremely important in the chemistry lab. Write three important safety considerations for this demonstration.

Procedure and Observations

Record your observations for each step of the demonstration.

- **1.** Place a beaker containing zinc filings and sodium hydroxide on a hot plate set to 4.
- 2. Use tongs to pick up the penny and place it in the heated beaker.
- **3.** While holding the beaker steady with tongs, remove the penny with the other tongs.
- 4. Put the hot penny in a beaker of cold water to cool and rinse it.
- 5. Use tongs to place the penny on the hot plate.
- **6.** When the penny has changed color, use the tongs to place it in the beaker of cold water.

Analysis

Working with the students at your table, spend a few minutes discussing what you observed during the demonstration. Then answer the questions individually on your own paper.

- 7. Describe what happened to the penny during the demonstration.
- **8.** What do you think turned the penny silver?
- **9.** What do you think turned the penny gold?
- **10. Making Sense** Do you think you made real gold? Why or why not? How could you find out?

A Penny for Your Thoughts Introduction to Chemistry

THINK ABOUT IT

Gold is worth a lot more than copper. If you could turn pennies into gold, you would be very rich. Beginning in ancient times, people known as alchemists tried to transform substances into other substances. In particular, some of them tried to turn ordinary metals into gold. Today, we recognize these alchemists as early chemists. In fact, the word *chemistry* is derived from Arabic *alkīmiyā*' and from Greek *khēmia*, meaning "the art of transmuting metals."

What is chemistry?

To answer this question, you will explore

- The Roots of Chemistry
- Chemistry: The Study of Matter and Change

EXPLORING THE TOPIC

The Roots of Chemistry

While trying to make gold, alchemists developed some of the first laboratory tools and chemistry techniques. They classified substances into categories and experimented with mixing and heating different substances to create something new. When alchemists succeeded in creating a new substance, they faced the challenge of figuring out whether or not that new substance was really gold. Often, alchemists were fooled into thinking that a substance was gold just because it looked like gold.

In class, you watched a procedure to make a "golden" penny.

During the procedure, when the silver-colored penny was heated, it turned a gold color. You came up with a **hypothesis** to explain what happened. A hypothesis is a possible explanation for an observation. It can be tested by further investigation or experimentation. Suppose your hypothesis is that the penny turned to actual gold during the procedure. To test that hypothesis, you can compare your gold-colored penny to actual gold to see if it has all the **properties**, or characteristics, of gold. You can check the penny's physical properties, such as color, hardness, weight, and the temperature at which it melts. You can also test its chemical properties, such as whether it changes when you pour acid on it or rusts over time.

Over the course of this unit, you will explore whether it is possible to turn copper or any other substance into gold. But unlike the alchemists, you will have the advantage of hundreds of years of chemistry knowledge to help you answer this question.

HISTORY CONNECTION

The ancient art of alchemy has been traced to many different cultures and areas around the world. Some alchemists sought to turn lead into gold or find a potion that would bring eternal life. This painting shows alchemists at work in the late 19th century.

Alchemists, 1893 (oil on canvas), Mehdi (1870–99)/ Golestan Palace Library, Tehran, Iran/Giraudon/ The Bridgeman Art Library

CONSUMER CONNECTION

Why is gold so valuable? It retains its shine and resists change, even after hundreds of years. Gold is soft and easy to fashion into beautiful jewelry. It is a vital component in computers and cellular phones. Gold is also relatively rare.

Chemistry at work—an iron train rusting

Chemistry: The Study of Matter and Change 3

Changes are constantly occurring all around you. Nails rust, colors fade, milk sours, and plants grow. You can mix ingredients and bake them in an oven to make cookies. You can bleach your hair to change its color, and you can freeze water to make ice cubes. Your body can transform cheeseburgers and burritos into muscle, fat, and bone. Chemists seek to understand changes such as these.

Chemistry is the study of what substances are made of, how they behave, and how they can be transformed. It is the study of matter and how matter changes. In this first unit, you will investigate matter and how it can be changed. You will learn to describe and explain what happens when matter is changed and you will begin to understand what changes are possible.

LESSON SUMMARY

What is chemistry?

KEY TERMS

hypothesis property chemistry

Chemistry is the study of the substances in the world around you. It is the study of matter and how matter can be changed. The modern study of chemistry emerged from the experimentation and effort of the alchemists. The alchemists invented useful tools and discovered many valuable laboratory techniques in their efforts to create gold out of ordinary substances.

Exercises

Reading Questions

- 1. How did the alchemists contribute to the modern study of chemistry?
- **2.** What is chemistry?

Reason and Apply

www

4. PROJECT Use the library or the Internet to research common uses for sodium hydroxide, which is also called lye.

5. Write down at least ten changes that you observe in the world around you. Which changes involve chemistry? Explain your reasoning.

What's the Matter? Defining Matter

LESSON **3**

People tend to value gold over other substances. You don't often see someone wearing aluminum jewelry or putting coal in a high-security bank vault. What is it about gold that makes it unique? Is it possible to create gold from another substance?

This lesson begins to explore the nature of matter as the first step toward proving whether you can or cannot create gold. After all, chemistry is the study of matter and its properties.

What is matter?

To answer this question, you will explore

- Defining Matter
- Is It Matter?
- Measuring Matter

EXPLORING THE TOPIC

Defining Matter

Matter is the word chemists use to refer to all the materials and objects in the world. Your desk, this book, and the paper and ink in the book all are matter. These are all things you can see or feel. However, your senses alone are not always enough to tell you if something is matter. For instance, you cannot see the virus that gave you a cold, but it is matter. Conversely, you can see shadows on the ground cast by the light from the sun, but they are not matter.

A gold ring, the ink in this book, and a virus each have *substance*, which means they are made out of material, or "stuff." The amount of substance, or material, in an object is called **mass.** Mass is a property of matter that can be measured. So, although the virus has very little substance, it still has mass.

Another property that a gold ring, the ink in this book, and a virus have in common is that they take up space, which means they have dimensions. The amount of space something takes up is called **volume** and is also a property of matter that can be measured.

So, matter is anything that has mass and volume. You can also say matter is anything that has substance and takes up space. This explains why a virus is matter but a shadow is not.

Is It Matter?

It is easy to see that solids and liquids have mass and volume. When water is poured into a container, you can see how much space it takes up. When

INDUSTRY CONNECTION

Gold has several special properties. It is shiny and it does not rust or tarnish. It is smooth, bendable, easy to dent, and even a small piece of gold is surprisingly heavy.

BIOLOGY CONNECTION

Viruses are so small that the length of a virus or other microorganism is measured in microns. A micron is equal to 0.001 millimeter. The viruses in this image have been magnified 10,000 times and colorized to make them easier to see.

